温馨提示

该商家信誉较好,多谢你的支持!

详情描述

编辑导读:在大数据和5G技术逐渐成为趋势的时代背景下,我们几乎每天参与到各种各样涉及到数据的场合,如社交网络、消费信息、旅游记录等等。我们几乎每天都会与各种各样的数据打交道,如企业层面的销售数据、运营数据、产品数据、活动数据等等。本文作者围绕数据分析发表了自己的看法,与你分享。

这将是一个以“数据”说话的时代,更是一个依靠“数据”竞争的时代!麦肯锡公司称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”并且,在世界500强企业中,有90%以上都建立了专门的数据分析部门。由此可见,数据分析的重要性以及未来趋势。

那么,数据分析究竟是什么?需要掌握哪些技能?如何进行数据分析?

我今天要分享的主题是:数据分析之道,抽丝剥茧与存乎一心,也就是我对于数据分析本身的实践与总结。


01 解构数据分析

我们字面拆解:数据 + 分析,数据是基础,分析是主导。可见,数据并不意味着价值,分析和决策才能创造价值!

而数据分析:思维方式大于实践方法思维方式:业务目标及调研+思维逻辑+创新想法+可行建议

实践方法:数据汇总统计+工具使用+可视化

数据分析对一个企业有巨大价值,则是对企业“数据”进行全方位的分析,两者相辅相成才能实现企业决策价值最大化。

所以,我们做好数据分析,要对数据分析的价值有清楚的定位,不能沦为单纯的 “取数”、“做表”、“写报告”,数据分析应该是对业务有实际的指导意义,并结合业务痛点去发现问题从而解决问题的工具。


1. 灵魂三问

数据分析的灵魂三问,这就是我今天讲的主要内容:数据分析是个什么东西?他到底解决什么问题?

数据分析如何学习技能知识?需要掌握什么样的能力?

数据分析如何进行?有什么方法论?

一谈到数据分析,我们就会联想到这些问题。

然而,我接触数据分析的契机,是从刚开始工作是接触的数据处理和市场调研,再之后商家代运营,产品数据运营等,这些工作中都涉及数据分析,到现在和朋友一起创建小飞象数据分析社群。

其实,我理解的数据分析不是从什么高大上的角度出发,它绕不开是什么、是多少、为什么、会怎样、又如何这几个问题。

说明白点:

  • 是什么(树立数据标准)

  • 是多少(数据描述状况)

  • 为什么(探索问题原因)

  • 会怎样(预测业务走势)

  • 又如何(综合判断状况)

其核心就是分析数据(结合统计学等知识),找到规律(比如异动),给出结论和建议,进而能够辅助决策。

那么,接下来我们来看一下数据分析在工作中几种常见的应用场景,切身体会一下:

  • 活动上线前,需要做A/B测试,通过数据反馈结果,验证活动是否符合预期;活动上线后,还要分析实时数据,调整推广节奏和推广动作。

  • 设计产品时,需要用数据来分析用户行为,挖掘用户需求;产品诞生后,还要用数据监测用户行为、测试产品功能,促进产品迭代。

  • 推广拉新时,需要对每个引流渠道进行质量评价;我们要收集每个渠道的投入,用数据分析来分辨渠道资源的效果,对比各大渠道对业务的影响,从中找出最优渠道。

  • ······

以上就是工作中遇到的数据分析应用的场景,然而,我在曾经公司里面亲眼看到,日常工作涉及到决策的时候,会常常出现如下场景:

场景一:“我觉得”、“应该”这样的词汇,谁也说服不了谁,一点点小事都要老板去拍板;

场景二:活动效果没出来,做汇报时,遭遇灵魂式追问:

  • “上线的新功能效果如何?”

  • “接下来打算怎么优化”

  • “最近数据波动的原因是什么?”

  • ······

有以上这样的场景,其根本原因在于缺乏数据思维思考逻辑,对业务的思维只停留在浅层的对比,甚至会出现“拍脑袋决定”的情况。

所以,在工作生活中,我们应该不断培养数据思维的习惯。举几个习惯:

  • 若看到一个广告,尝试去分析广告的受众群数量大小,渠道数量、成本和效果回收的情况。

  • 若看到一个活动,想办法去拆解出它的目的、针对人群、预期活动目标、投入成本、奖品爆率模型等信息。

  • 若看到一个产品,在使用完毕之后去分析他的商业模式、面对的用户群体、群体的使用场景,以及可能设置的付费点并去验证,同时想到可改进的价值点,并观察后续运营动作是否验证了改进点。

  • 若看到一组客服回访数据,能想到线索来源,通话总次数,通话有效次数&时长,线索意向级别,销售司龄,套餐类型,来判断这组客户的意向度,以及跟进程度,成单周期。

  • 若看到一列数据,我们应该可以清楚的指出数据是否有波动,这种波动是否正常,可能由哪些原因带来了这些波动,相关的原因是否有数据呈现。

  • 若看到一篇关于运营效果的报告,我们应该试图去分析它的内生逻辑是否足够支撑报告的结论,在哪些点上可能没有详尽调查。

  • ·······

以上是我们可以在生活中培养数据思维的习惯思考场景,当然,在实际工作中的前提是,我们要熟悉自己的业务流程以及业务指标等,我们在培养数据思维的同时数据敏感度会不断提升。


2. 数据的特性

数据是客观事物发生留下的客观事实,发展变动的数字化记录。随着科学技术的发展,数据的概念内涵越来越广泛包括数值,文本,声音,图像,视频等。

而新增用户、留存、用户活跃、转化、收入、用户规模等,通过数据量化,我们才能精准感知业务指标。所以,数据是用来描述业务指标的,是被量化的业务指标。但数据的本质还是数值,只是属于最后结果的一种表现形式,要想改变结果,只能去寻找因,从因上做改变,才能引起结果的改变。

而数据的特性有:

1)统一性

统计口径一致、计算逻辑一致、数据管理流程一致……

2)安全性

就是除了统一性之外,还有安全性的问题。数据会不会泄露?不同数据牵涉的敏感点有哪些?

3)时效性

很大程度上制约着决策的客观效果。有些数据随着时间的推移,价值会越来越小。

4)准确性

大家都知道,数据正确与否的重要性。错误的数据,可能会导致失败的决策;当出现问题时,到底是后台系统的统计,还是指标统计逻辑有问题。


3. 分析的本质

分析的思维过程是:

  • 发生了什么?——追溯过去,了解真相。

  • 为什么发生?——洞察事务发生的本质,寻找根源。

  • 未来可能发生什么?——掌握事物发展的规律,预测未来。

  • 我们该怎么做?——基于已经知道的“发生了什么”、“为什么会发生”以及“未来可能发生什么”的分析,帮助和确定可以采取的措施。

分析本质即面临各种问题时,对于企业而言,让业务更加清晰,让决策更加高效。对于个人而言,认清现状,让自己的决定更加有利。

这些东西说起来都是高大上的,简单来说,能通过数据找到问题,准确地定位问题,准确地找到问题产生的原因,为下一步的改进,找到机会点,也就是所谓的:数据驱动。


4. 数据分析需要怎样的能力

1)通关心态

当你决定进入数据分析行业的第一天,你就要对标行业中的90分高手、100分高手。具备通关的心态,3年,也就是6个6个月。每6个月左右,至少要突破1个关卡。

如此,6个6个月过后,你往往能突破到第6关、第7关。

如果是你天赋极强的人,或者你的运气很好,你极可能就成为顶尖专家了。

那么,我们来看一下“德雷福斯模型”,把打怪升级的成长过程分为五级。

  1. 第一级是新手(10-20分)。新手能记住抽象的规则,然后按照规则行事。

  2. 第二级是先进的初学者(30-40分)。先进的初学者不但能按规则行事,而且能够根据以往的经验,面对不同的局面能采取不同的行动。新手只会规则告诉他的那几招,而先进的初学者除了规则还有经验,他可以在一定程度上,对不同环境随机应变。

  3. 第三级是胜任(50-60分)。胜任者面对几个事情,能够分出优先级。也就是说,在做决策的时候,他清楚地知道,首先应该照顾什么地方,其次应该做什么事。能分清什么重要,什么不重要。他有时候按照固定规则去做事,有时候则是依据以往的经验。

  4. 第四级是精通(70-80分)。精通者能够把所有的信息当做一个整体来考虑。精通者考虑问题,很少理性地使用固定的规则,他已经不再区分经验和规则,而是从整体出发,全盘考虑。

  5. 第五级是专业(90分-100分)。专业者完全不受理性的束缚,他的判断和反应都是在无意识的情况下做出的。哪怕面对的是全新的情况,他也能无意识地把这个情况和以前的经验联系在一起,自动处理。

2)综合的能力

数据分析要做好,综合要求非常高,因为大多数据分析是要向老板汇报的,厉害的数据分析人员至少要具备业务能力、思考能力、沟通能力、表达能力、分析能力、数据能力、技术能力及统计能力。

  • 业务能力:充分理解公司战略、行业、领导思想,最好有业务岗位实战经验

  • 思考能力:最值钱的是想法,通过数据对这些想法进行系统化的分析和论证

  • 沟通能力:对上沟通确认目标、对中要采取合作、对下要明确执行要求

  • 表达能力:一切都是为了让人看懂,态度上重视汇报,汇报讲究故事和逻辑

  • 分析能力:基于业务常识选择合适的指标和维度,发现异动原因并可视化展现

  • 数据能力:拥有全局的数据视野、更深的数据理解能力和操作能力

  • 技术能力:EXCEL、SQL、Python/R、机器学习/深度学习引擎

  • 统计能力:理解统计的基本概念、理解基本算法